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SCIENTIFIC ARTICLE

A fundamental goal of microbial ecology is to accurately determine the species composition in a given 
microbial ecosystem. In the context of the human microbiome, this is important for establishing links between 
microbial species and disease states. Here we benchmark the Microba Community Profiler (MCP) against other 
metagenomic classifiers using 140 moderate to complex in silico microbial communities and a standardized 
reference genome database. MCP generated accurate relative abundance estimates and made substantially 
fewer false positive predictions than other classifiers while retaining a high recall rate. We further demonstrated 
that the accuracy of species classification was substantially increased using the Microba Genome Database, 
which is more comprehensive than reference datasets used by other classifiers and illustrates the importance 
of including genomes of uncultured taxa in reference databases. Consequently, MCP classifies appreciably 
more reads than other classifiers when using their recommended reference databases. These results establish 
MCP as best-in-class with the capability of producing comprehensive and accurate species profiles of human 
gastrointestinal samples.
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Identifying the microbial species present in natural 
biological samples is essential for understanding their 

role in a range of applications including developing 
diagnostics and therapeutics for human health (Greenblum 
et al., 2012; Lloyd-Price et al., 2016; Gentile and Weir, 
2018; Zmora, et al. 2019), refining agricultural practices 
(Kennedy and Smith, 1995; Orellana et al., 2018), and 
gaining insights into biogeochemical cycles (Kuypers et 
al., 2018; Evans et al., 2019). Our inability to culture most 
in situ populations has severely limited our understanding 
of microbial ecosystems (Epstein 2013; Lloyd et al., 2019),  
and it is estimated that even highly studied habitats such 
as the human gut lack cultured representatives for the 
majority of species (Almeida et al., 2020). Metagenomics, 
the sequencing of DNA extracted directly from clinical and 
environmental ecosystems has emerged as a powerful 
approach to bypassing this cultivation bottleneck, providing 
a holistic view of both the taxonomic and functional diversity 
of microbial communities (Hugenholtz & Tyson, 2008). 
This approach has been driven by exponential increases in 
sequencing throughput and associated decreasing costs 
leading to the widespread adoption of metagenomics by 
environmental and clinical researchers.

Metagenomics provides a relatively unbiased sampling 
of all populations within a community, including bacteria, 
archaea, eukaryotes and viruses, and the ability to 
resolve strains along with genes of interest such as those 
conferring antimicrobial resistance or pathogenicity 
(Weinstock, 2012; Köser et al., 2014; Jovel et al., 2016). 
However, accurately establishing the composition of 
microbial communities from metagenomic data remains 
a challenge due to their complexity, the comparatively 
short read length of the most widely used sequencing 
technologies (typically 150 to 250 bp), and incomplete 
genome reference databases (Sczyrba et al., 2017;  
Ye et al., 2019). This latter limitation is being addressed  
by recent approaches that recover high quality metagenome-
assembled genomes (MAGs) from metagenomic datasets 
resulting in the availability of tens of thousands of draft 
genomes of uncultured taxa, most notably from the human 
gastrointestinal tract (Pasolli et al., 2019; Almeida et al., 
2019; Nayfach et al., 2019).

Several approaches have been proposed for taxonomically 
classifying metagenomic data in order to estimate the relative 
abundance of species in a sample. Metagenomic reads are 
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classified on the basis of sequence similarity to a reference 
database of previously characterized sequence data, 
often whole-genome assemblies. Existing metagenomic 
classifiers can be divided into four groups based on how they 
establish sequence similarity; namely, i) genome nucleotide 
alignment approaches such as Centrifuge (Kim et al., 2016), 
ii) protein alignment approaches such as Kaiju (Menzel et 
al., 2016) and DIAMOND (Buchfink et al., 2015), iii) marker 
gene approaches such as MetaPhlAn (Segata et al., 2012)  
and mOTUs (Milanese et al., 2019), and iv) composition 
or k-mer based approaches such as Kraken (Wood et al., 
2019), Bracken (Lu et al., 2017), MetaCache (Müller et 
al., 2017), and Ganon (Piro et al., 2019). In general, k-mer-
based approaches are the most computationally efficient, 
although have high memory requirements. Marker-based 
approaches typically have lower memory requirements  
but at the cost of only classifying reads from a specific 
subset of genes or genomic regions. Alignment-based 
approaches favour the additional information provided  
from mapping reads to reference sequences at the cost 
of higher computational requirements than k-mer based 
approaches and higher memory requirements than  
marker-based approaches.

The Microba Community Profiler (MCP) was developed 
to be a highly accurate and specific tool to estimate the 
relative abundance of bacterial, archaeal, eukaryotic, 
and viral community members by aligning metagenomic 
reads to a high quality and comprehensive database of 
microbial reference MAGs and isolate genomes. Similar 
to other classifiers, MCP provides per-read classifications 
along with an estimate of the proportion of reads assigned  
to a species. MCP also explicitly indicates the species 
predicted to be present in a community profile, in contrast 
to the majority of classifiers considered in this study which  
report thousands of false positive species if profiles  
are not manually inspected and appropriately filtered.  
The community profiles produced by the MCP are 
based on the rank normalized taxa and comprehensive 
species clusters defined by the Genome Taxonomy 
Database (GTDB; Parks et al., 2018, 2020) which provides 
higher taxonomic resolution than the NCBI Taxonomy  
(Parks et al., 2020; Federhen, 2015). Here we benchmark 
MCP against a range of widely used academic 
metagenomic classifiers using 140 in silico mock 
communities of varying complexity. We demonstrate  
that MCP has superior recall and precision and maps a 
higher proportion of reads from gut metagenome datasets.

Results
Metagenomic classifiers and standardized 
reference database

We evaluated the performance of MCP and nine publicly 
available metagenomic classifiers (Table 1), which use  
a variety of approaches and have previously been shown  
to be amongst the best performing classifiers (Seppey  
et al., 2020; Ye et al., 2019; Lindgreen et al., 2016; Sczyrba  
et al., 2017). A single standardized reference database  
was used by all classifiers in order to evaluate classification 
performance independent of the reference database  
(Ye et al., 2019; Nasko et al. 2018; Méric et al., 2019), with 
the exception of MetaPhlAn2, which was used with its pre-
built marker database because building a custom database 
was not practical. The standardized reference database  
is comprised of 15,555 quality filtered isolate genomes 
from 12,250 bacterial and archaeal species (see Methods; 
Supp. Table 1) estimated to have an average completeness 
and contamination of 99.2% and 0.73%, respectively. 
Only high-quality isolate genomes were included in the 
standardized reference database to ensure classification 
performance would not be adversely impacted by low 
genome quality and to reflect that most classifiers 
recommend the use of reference databases comprised 
solely of complete isolate genomes (see Methods).  
Species were limited to a maximum of five representative 
genomes in order to reserve a wide diversity of strains  
for simulating in silico mock communities. Species 
represented by >1 genome (1,474 of 12,250) had an average 
intraspecific ANI of 97.8 ± 0.96%. The standardized reference 
database and comparison of profilers was limited to 
bacterial and archaeal species as not all classifiers support 
the classification of eukaryotic or viral species.

Three parameter settings for the MCP were evaluated:  
i) MCP with the standardized reference database and  
default parameters used to filter out expected false  
positive predictions (referred to as MCP); ii) MCP without 
removing expected false positives (referred to as  
unfiltered MCP or uMCP); and iii) MCP with default  
filtering parameters using the Microba Genome Database 
(MGDB), which comprises 73,646 dereplicated genomes 
from 28,246 species and is the reference database used  
by MCP in practice (referred to as MCP-MGDB).



SCIENTIFIC ARTICLE

3Microba Life Sciences, Ltd

Simulation of in silico mock communities
We simulated 140 in silico mock microbial communities 
with varying species diversity, intraspecific diversity, 
and genomic similarity to reference database genomes  
(Table 2; Supp. Table 2). Communities were comprised  
of bacterial and archaeal species and simulated with either 
medium (100 ± 25) or high (500 ± 100) species diversity 
relative to previously used mocks (Sczyrba et al., 2017), 
with each species comprised of either a single strain  
or up to 10 randomly selected strains (see Methods).  
The average nucleotide identity (ANI) to reference genomes 
was used to construct mock communities with high  
(ANI of 99% to 99.75%), moderate (ANI of 97% to 99%), 
and low (ANI of 95% to 97%) genomic similarity to the 
standardized reference database. A baseline of 95% ANI 
was selected to match the commonly used operational 
definition of a microbial species (Jain et al., 2018;  
Parks et al., 2020). Mock communities were simulated 
under all combinations of these parameters, with the 
exception of mocks with high species diversity and low  
ANI similarity, as there were insufficient species with 
available genomes within this lower ANI range. In addition,  
mock communities were simulated from the reference 
genomes in order to establish a baseline at 100% ANI 
similarity for examining the impact of increasing genomic 
dissimilarity from reference genomes on classifier 
performance. The 140 mock communities span 6,971 
unique species from 2,268 genera and 50 phyla, and 
contain species ranging from 0.0000019 to 80.5%  
of the community (Table 2). Communities were simulated  
to a depth of 2.1 Gb using 2×150 bp paired-end reads  
with the abundance of strains following a log-normal 
distribution as this is commonly used for modelling 

microbial communities (Curtis et al., 2002; Fritz et al.,  
2019; see Methods).

Establishing detection limits of classifiers

By default, many metagenomic classifiers report all species 
with any evidence of being present within a sample, down 
to a single mapped read, which can result in thousands  
of low abundance false positive species predictions,  
i.e. species not present in the sample (Figs. 1A and 1B;  
Supp. Table 3). The implicit expectation is that researchers 
will filter low abundance predictions or only consider 
analyses which are insensitive to false positive predictions 
(Ye et al., 2019). Unfortunately, the former is challenging 
without explicit guidance and the latter is highly restrictive 
as it limits the ability to confidently assert the presence 
of low abundance species in a sample. MCP, mOTUs,  
and MetaPhlAn are exceptions as their predicted community 
profiles contain only those species with sufficient evidence 
to assert with high confidence that a species is present in a 
sample (Figs. 1A and 1B). Consequently, even for the mock 
communities with high ANI similarity to reference database 
genomes the evaluated classifiers report a high proportion 
of false positives (average of 86.4 to 96.8% of predicted 
species), with the exceptions of MCP (0.18 ± 0.44%) and to 
a lesser extent mOTUs (3.6 ± 2.1%) and MetaPhlAn (7.6 ± 
3.7%) (Supp. Table 3). 

Here, the in silico mock communities were used to 
establish detection limits for the different classifiers. 
Intuitively, the detection limit of a classifier is the lowest 
abundance species in a sample that can be identified 
before an unacceptable number of false positive species 
are reported. While the tolerance for false positives  

Classifier Version Classifier Type Base Type Reference

MCP 2.0.15 genome DNA (this study)

Ganon 0.1.5 k-mer (k=19) DNA Piro et al., 2019

Kraken 2.0.7 k-mer (k=35) DNA Wood et al., 2019

Bracken 2.5.0 k-mer (k=35) DNA Lu et al., 2017

MetaCache 0.9.0 k-mer (k=16) DNA Müller et al., 2017

Centrifuge 1.0.4 genome DNA Kim et al., 2016

DIAMOND-LCA 0.9.29 protein protein Buchfink et al., 2015

Kaiju 1.7.2 protein protein Menzel et al., 2016

mOTUs 2.5.1 marker DNA Milanese et al., 2019

MetaPhlAn# 2.96.1 marker DNA Truong et al., 2012
# evaluated using MetaPhlAn database v296 downloaded on Feb. 24, 2020

Table 1. Properties of classifiers compared in this study.
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is subjective and application-specific, in general false 
positive predictions must be kept low in order to have 
confidence in the species reported by a classifier. We define 
the detection limit of each classifier as the lowest reported 
abundance at which a target false discovery rate (FDR) can 
be achieved. As expected, the detection limit increases as 
community members becoming increasingly divergent from 
genomes in the reference database (Fig. 1C). The detection 
limit also varies substantially between classifiers with MCP 
having the lowest detection limit regardless of the target 
FDR (Fig. 1C; Table 3). At an FDR of 0.1% (i.e. 1 in 1000 
species expected to be false positives), the MCP had a mean 

detection limit of 0.0068%, 0.069%, and 0.52% on mock 
communities with high, moderate, and low ANI similarity  
to the reference database, respectively (Table 3).  
Examining the results at an FDR of 5%, illustrates that  
the detection limit varies substantially for individual  
mock communities at a specific level of ANI similarity  
(Fig. 1D). This highlights the challenge in specifying a fixed 
abundance threshold for filtering classification results which 
will reliably remove the majority of false positives species 
and, hence, the need for classifiers to directly address the 
issue of false positive predictions.

ANI similarity Species 
diversity

Strain 
diversity

ANI to closest
reference genome (%)

AF to closest reference 
genome (%)#

No. species Strains  
per species

Species 
abundance (%)

Identical: 100% Medium Single 100 100 106 ± 15.8 1 26.8 to 3.3×10-4

Identical Medium Multiple 100 100 92 ± 22.5 2.6 ± 0.16 62.9 to 9.0×10-5

Identical High Single 100 100 490 ± 96.0 1 26.9 to 1.9×10-6

Identical High Multiple 100 100 505 ± 74.8 2.5 ± 0.07 13.2 to 6.1×10-6

High: [99%, 99.75%] Medium Single 99.4 ± 0.22 94.5 ± 3.02 99 ± 21.3 1 38.0 to 2.4×10-4

High Medium Multiple 99.3 ± 0.22 94.4 ± 3.06 106 ± 29.7 4.7 ± 0.33 39.4 to 3.2×10-4

High High Single 99.4 ± 0.22 94.5 ± 2.93 499 ± 86.1 1 60.3 to 1.6×10-5

High High Multiple 99.3 ± 0.22 94.4 ± 3.00 450 ± 116 4.0 ± 0.32 18.4 to 1.3×10-5

Moderate: [97%, 99%) Medium Single 98.3 ± 0.54 90.9 ± 4.41 104 ± 24.3 1 62.3 to 2.3×10-4

Moderate Medium Multiple 98.4 ± 0.52 91.2 ± 3.94 106 ± 19.6 4.7 ± 0.16 29.6 to 3.2×10-4

Moderate High Single 98.3 ± 0.54 90.8 ± 4.23 509 ± 58.6 1 23.2 to 2.8×10-5

Moderate High Multiple 98.3 ± 0.53 91.1 ± 4.19 532 ± 70.9 3.8 ± 0.26 10.0 to 9.2×10-6

Low: [95%, 97%) Medium Single 96.4 ± 0.50 87.9 ± 4.56 93 ± 32.9 1 80.5 to 2.8×10-4

Low Medium Multiple 96.3 ± 0.52 88.0 ± 4.33 109 ± 26.6 3.2 ± 0.23 36.6 to 1.4×10-4
# AF = alignment fraction, i.e. percentage of orthologous regions shared between two genomes

Table 2. Properties of the 140 in silico mock communities averaged over the 10 replicates from each class.

High ANI Moderate ANI Low ANI

Classifier 0.1% 1% 5% 10% 0.1% 1% 5% 10% 0.1% 1% 5% 10%

MCP 0.0068 0.0016 0 0 0.069 0.048 0.0027 0 0.52 0.52 0.069 0.014

Unfiltered MCP 0.25 0.23 0.023 0.011 0.23 0.21 0.056 0.025 0.98 0.98 0.26 0.079

MCP w/ MGDB 0.014 0.00097 0 0 0.17 0.14 0 0 1.5 1.5 0.037 0.0039

Ganon 0.30 0.27 0.045 0.021 0.38 0.35 0.095 0.046 2.2 2.2 1.1 0.62

Kraken 0.39 0.37 0.097 0.038 0.51 0.47 0.18 0.10 2.6 2.6 2.2 0.9

Bracken 0.41 0.38 0.11 0.042 0.58 0.54 0.21 0.11 2.9 2.9 2.6 1.1

MetaCache 0.36 0.33 0.049 0.021 0.49 0.43 0.098 0.037 2.7 2.7 2.2 0.55

Centrifuge 0.25 0.22 0.026 0.012 0.49 0.45 0.16 0.061 5.5 5.5 5.3 4.6

DIAMOND-LCA 0.14 0.13 0.042 0.018 0.15 0.15 0.053 0.032 0.33 0.33 0.3 0.12

Kaiju 0.27 0.24 0.085 0.032 0.62 0.60 0.12 0.061 1.8 1.8 1.5 0.56

mOTUs 4.0 3.9 0.13 0 2.6 2.6 0.7 0.041 19 19 18 10

MetaPhlAn 2.3 2.3 0.43 0.0094 2.9 2.9 1.6 0.063 2.5 2.5 0.96 0.15

Table 3. Mean detection limit of classifiers at select false detection rates.
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uMCP = unfiltered MCP;   G = Ganon;   K = Kraken;   B = Bracken;   M = MetaCache;   C = Centrifuge;   D = DIAMOND-LCA,   MPA = MetaPhlAn

Figure 1. Metagenomic classifiers have different minimum species abundance limits at which species can be reliably detected.  
(A) Number of false positive species predictions made by each classifier on mock communities with decreasing ANI similarity to reference 
database genomes. (B) Percentage of predicted community profiles comprised of false positive predictions. The relatively low community 
percentages indicate that the majority of false positive predictions are low abundance species. With the exception of the MCP, mOTUs, and 
MetaPhlAn, these results illustrate that low abundance species must be filtered from the profiles predicted by metagenomic classifiers 
in order to reduce false positive predictions. (C) Median detection limit of each classifier over all mock communities at a given level of 
ANI similarity to the reference database for varying false discovery rates. MCP, uMCP, and Ganon report zero false positives for mock 
communities comprised of genomes in the reference database (identical ANI) and consequently have a median detection limit reported as 
0% indicating all species could be identified without any false positives. Centrifuge and MCP-MGDB only report extremely low abundance 
false positives for the identical ANI mock communities resulting in median detection limits of 0.00036% and 0%, respectively. Results for 
mOTUs and MetaPhlAn are not shown as they have substantially higher detection limits than the other classifiers (Supp. Fig. 1; Table 3). 
(D) Detection limit of each classifier on each mock community resulting in a false discovery rate of 5%. MCP, MCP-MGDB, and Ganon have 
detection level at or near 0% across all samples at a number of ANI levels so do not produce visible box-and-whisker plots (see Table 3). 
The box-and-whisker plots show the lower and upper quartiles as a box, the median value as a line within the box, 1.5X the interquartile 
range as whiskers, and outliers as crosses.
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Predicting the presence or absence of species
In order to assess the accuracy of species predictions  
for the different classifiers, we conservatively removed 
low abundance populations at <0.01% as these have a 
high probability of being reported as false positives by all 
classifiers other than the MCP (Fig. 1C). Removing lower 
abundance species ensures more accurate results as  
it acknowledges that species comprising the “long tail”  
of microbial communities (Curtis et al., 2002; Fritz  
et al., 2019) cannot be identified by most metagenomic 
classifiers without reporting unacceptable numbers  
of false positives (Fig. 1A and 1B). The mock communities 
contained an average of 271.4 ± 205.8 and 210.0 ± 141.9 
species before and after removal of species at <0.01% 
abundance, respectively (Supp. Table 2).

The performance of classifiers generally decreased with 
increasing ANI divergence from the reference database 
(Fig. 2; Table 4; Supp. Table 4), consistent with previous 
studies showing the importance of using a comprehensive 
reference database (Méric et al., 2019; Piro et al., 2019). 
MCP reported the lowest number of false positive species 
as indicated by its high precision (Fig. 2A). However, there 
is typically a trade-off between precision and recall, and 
this is reflected in MCP failing to identify some species 
whereas other classifiers such as MetaCache and Bracken 
have high recall with low relative precision (Figs. 2A and 
2B). With equal weight given to precision and recall the MCP 
using the MGDB database has the best overall performance 
(F1 = 0.97 averaged across all mocks; Fig. 2C; Table 4), 
which demonstrates the positive impact of using a large, 
comprehensive reference database. Among the classifiers 
using the standardized reference database, MCP has the 
best performance across all mock communities (F1 = 0.96) 
followed by the unfiltered MCP profiles (F1 = 0.92), mOTUs 
(F1 = 0.91), and MetaCache (F1 = 0.88) (Fig. 2C; Table 4). 
MetaPhlAn performs relatively poorly (F1 = 0.81) despite 
using a reference database built from nearly six times  
as many genomes as the standardized reference database 
illustrating that a comprehensive database is not sufficient 
in and of itself to provide good performance. 

MCP provided the best overall performance without  
the need for manual thresholding because it automatically 
filters species profiles based on the number of stringently 
mapped reads being assigned to a species. By contrast, 
all other classifiers, with the exception of mOTUs and 
MetaPhlAn, report large numbers of false positives despite 
limiting results to species at ≥0.01% relative abundance 

(Fig. 2D). In order to further explore the performance of 
MCP relative to the other classifiers, profiles were filtered  
at the species abundance resulting in the highest F1 score 
as determined independently for each classifier on each 
mock community (referred to as the optimized F1 score). 
Notably, the average MCP F1 score without optimization 
of 0.96 is higher than the optimized F1 score of all other 
classifiers (Table 4). We note that establishing the F1 
optimized species abundance threshold is not possible  
on real data and any fixed abundance threshold will result  
in the same or worse performance than achieved with these 
optimized thresholds (Fig. 1D).

Estimating the relative abundance of species
Based on mock community analysis (mocks filtered  
at 0.01%), the accuracy of relative abundance estimates 
decreased with increasing ANI divergence from the 
reference database (Fig. 3; Table 5; Supp. Table 
5). Centrifuge, DIAMOND-LCA, Kaiju, MetaPhlAn,  
and to a lesser extent mOTUs deviate substantially from  
the expected species abundances (Table 5), consistent  
with prior benchmarking of these classifiers (Ye et al., 
2019). The other classifiers have similar overall accuracy  
in terms of L1 distance (i.e. absolute differences between 
profiles) with MetaCache (9.0%) performing the best 
followed by MCP-MGDB (10.0%), MCP (10.8%), and Bracken 
(11.1%) (Fig. 3A; Table 5). Results were similar for the relative 
absolute percent error with MetaCache having a 1 to 2% 
overall improvement over the other classifiers (Fig. 3A; Table 
5). These results indicate that MCP, MCP-MGDB, Ganon, 
Kraken, Bracken, and MetaCache are all able to provide 
reasonably accurate species abundance estimates although 
the obtained accuracy depends heavily on the similarity of 
community members to genomes in the reference database.  
This is seen most clearly with the low ANI similarity 
mock communities where the abundance estimates are 
substantially less accurate and more variable (Fig. 3A). 

The high precision of the MCP (Fig. 2A) resulted in 
only a small percentage of the predicted community 
being comprised of false positive species (0.18 ± 0.45%;  
Table 5). This is in contrast to the other classifiers which 
predict more false positive species at an appreciably 
higher percentage of the community, e.g. MetaCache at 
1.97 ± 3.0% and Bracken at 3.92 ± 4.53% (Fig. 3C; Table 5).  
The low ANI similarity mock communities best highlight 
the tradeoff between the MCP and a more lenient classifier 
such as MetaCache where false positive species account 
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Figure 2. Performance of metagenomic classifiers to predict the presence or absence of species measured using (A) precision,  
(B) recall, (C) F1 score, and (D) number of false positive predictions on mock communities with decreasing ANI similarity to reference 
database genomes. 

for 1.0 ± 0.77% and 6.6 ± 3.2% of the reported communities, 
respectively (Fig. 3C; Supp. Table 5). Classifiers generally 
only fail to identify low abundance species with MCP 
showing slightly decreased performance as expected from 
its lower recall rate (Figs. 2B and 3D; Table 5). This again 
highlights the trade-off between false negative and false 

positive predictions, and illustrates that the MCP favors  
a slight increase in the percentage of the community  
that is undetected (Fig. 3D) in order to substantially reduce  
the percentage of the reported community comprised  
of erroneously identified species (Fig. 3C).
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Classifier Precision Recall F1 score
Precision

(F1 optimized)
Recall

(F1 optimized)
Optimized
F1 score

MCP 0.98 ± 0.04 0.94 ± 0.06 0.96 ± 0.05 - - -

Unfiltered MCP 0.88 ± 0.13 0.97 ± 0.04 0.92 ± 0.09 0.94 ± 0.07 0.95 ± 0.06 0.94 ± 0.06

MCP w/ MGDB 0.99 ± 0.02 0.95 ± 0.04 0.97 ± 0.03 - - -

Ganon 0.81 ± 0.20 0.99 ± 0.01 0.87 ± 0.14 0.91 ± 0.10 0.94 ± 0.07 0.92 ± 0.08

Kraken 0.69 ± 0.24 0.99 ± 0.01 0.79 ± 0.18 0.87 ± 0.11 0.91 ± 0.09 0.88 ± 0.09

Bracken 0.68 ± 0.24 1.00 ± 0.01 0.78 ± 0.19 0.87 ± 0.11 0.90 ± 0.10 0.88 ± 0.09

MetaCache 0.80 ± 0.18 0.99 ± 0.01 0.88 ± 0.12 0.90 ± 0.09 0.95 ± 0.05 0.92 ± 0.07

Centrifuge 0.82 ± 0.21 0.95 ± 0.05 0.86 ± 0.15 0.89 ± 0.13 0.90 ± 0.10 0.90 ± 0.11

DIAMOND-LCA 0.83 ± 0.15 0.72 ± 0.11 0.76 ± 0.09 0.87 ± 0.11 0.70 ± 0.10 0.77 ± 0.08

Kaiju 0.73 ± 0.23 0.95 ± 0.04 0.80 ± 0.17 0.87 ± 0.12 0.87 ± 0.09 0.87 ± 0.10

mOTUs 0.90 ± 0.11 0.92 ± 0.03 0.91 ± 0.07 0.91 ± 0.10 0.92 ± 0.04 0.91 ± 0.07

MetaPhlAn 0.92 ± 0.03 0.73 ± 0.08 0.81 ± 0.07 0.92 ± 0.03 0.73 ± 0.08 0.81 ± 0.05

Table 4. Evaluation of classifiers to predict the presence or absence of species across the 140 mock communities with and without 
optimizing the F1 score (mean ± std. dev.). MCP and MCP w/MGDB were run with default settings without F1 optimization.

Comparison of metagenomic classifiers  
on human gastrointestinal metagenomes
Community profiles produced by MetaCache, Kraken, 
Bracken, mOTUs, and MetaPhlAn were compared to 
those obtained using the MCP on a set of 100 deidentified 
Australian fecal metagenomes. We focused on these 
classifiers as they were the strongest performing classifiers 
on the in silico mock communities and/or are widely used 
by the research community. Unlike the in silico mock 
community analysis, here each classifier was evaluated 
using its recommended reference database. MCP uses 
the MGDB which consists of 73,646 dereplicated genomes 
which span 28,246 species clusters (see Properties 
of the Microba Genome Database). MetaCache uses  
a reference database comprising 16,488 bacterial, 
343 archaeal, and 8,999 viral genomes annotated as 
complete in RefSeq. Kraken and Bracken use a slightly 
expanded set of 18,871 bacterial, 360 archaeal, and 9,334 
viral genomes along with a human reference genome 
and a collection of known vectors. mOTUs uses a pre-
built database of marker genes obtained from ~25,000 
bacterial and archaeal reference genomes which have  
been supplemented with additional marker genes obtained 
from public metagenomes. The MetaPhlAn database  
consists of ~1.5 million unique clade-specific marker 
genes obtained from ~100,000 bacterial, archaeal, and 
eukaryotic genomes. Species profiles for all classifiers are 
defined according to the NCBI Taxonomy (Federhen, 2015)  

with the exception of the MCP which uses the GTDB  
(Parks et al., 2020).

Since the community composition of the fecal samples 
are unknown, other measurable aspects of the community 
profiles produced by each metagenomic classifier were 
evaluated. The percentage of reads assigned to a species 
was substantially higher for the MCP (84.4% on average)  
than Kraken (49.0% on average), Bracken (58.8% on 
average), or MetaCache (50.5% on average; Fig. 4A). 
This was attributed to the large number of uncultured 
gut microbiome species represented in MGDB that are 
absent from the reference databases used by the other 
classifiers. By design, mOTUs and MetaPhlAn only classify 
the small subset of reads that map to marker genes and 
thus assessing percentage of mapped metagenomic reads 
is not a meaningful comparsion. As expected, Kraken, 
Bracken, and MetaCache report thousands of species (Fig. 
4B), the vast majorityof which are likely low abundance 
false positives based on mock community results (Fig. 
1A and 1B). Consequently, species with an estimated 
abundance <0.01% were removed as these are expected 
to predominately be false positive predictions. The MCP 
reports the largest number of species with an abundance 
≥0.01% (171.6 on average) followed by Bracken (164.6 on 
average), MetaCache (143.6 on average), and Kraken (136.7 
on average). It is notable that mOTUs (131.9 on average) 
and MetaPhlAn (70.6 on average) report the fewest species 
in these samples, but were observed to produce far fewer 
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Figure 3. Performance of metagenomic classifiers to predict species abundances. (A) L1 distance (0% = identical to ground truth; 
200% = no species in common with ground truth) between the ground truth and predicted species profiles. (B) Mean relative error of 
species present in both the ground truth and predicted species profiles. (C) Sum of false positive species abundances. (D) Sum of false 
negative species abundances. Lower values indicate better performance. Results are provided across mock communities of increasing 
ANI divergence from the reference database. Results for Centrifuge, DIAMOND-LCA, Kaiju, and mOTUs are not shown as they have 
substantially worse species abundance estimates than the other classifiers (Supp. Fig. 2).

false positives than Kraken, Bracken, and MetaCache on the  
in silico mock communities (Fig. 2D). This suggests that 
these latter classifiers may only be reporting greater 

numbers of species than mOTUs and MetaPhlAn as a result 
of increased numbers of false positive predictions.
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Classifier L1 Distance Relative Error (%) Abundance of FPs (%) Abundance of FNs (%)

MCP 10.8 ± 10.47 11.2 ± 10.97 0.18 ± 0.45 0.20 ± 0.25

Unfiltered MCP 11.3 ± 10.98 11.9 ± 11.92 0.73 ± 0.96 0.08 ± 0.12

MCP w/ MGDB 10.0 ± 7.60 10.1 ± 6.69 0.27 ± 0.82 0.31 ± 0.78

Ganon 11.6 ± 9.90 10.8 ± 11.32 1.72 ± 2.32 0.03 ± 0.05

Kraken 14.4 ± 11.39 12.9 ± 13.53 3.42 ± 3.89 0.06 ± 0.35

Bracken 11.1 ± 10.33 10.5 ± 13.50 3.92 ± 4.53 0.05 ± 0.35

MetaCache 9.0 ± 8.05 10.0 ± 11.46 1.97 ± 3.00 0.02 ± 0.03

Centrifuge 49.0 ± 22.18 52.7 ± 24.92 2.97 ± 5.73 0.28 ± 0.32

DIAMOND-LCA 78.1 ± 9.54 68.6 ± 7.27 0.54 ± 0.53 3.05 ± 2.41

Kaiju 42.5 ± 13.48 34.6 ± 11.20 2.19 ± 2.59 0.20 ± 0.19

mOTUs 18.26 ± 11.86 37.2 ± 34.86 4.79 ± 5.76 4.58 ± 4.69

MetaPhlAn 43.3 ± 19.97 37.9 ± 40.37 3.58 ± 3.21 16.63 ± 10.82

Table 5. Performance statistics for species abundance estimates across the 140 mock communities (mean ± std. dev.).
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Figure 4. Comparison of metagenomic classifiers on 100 
deidentified Australian fecal samples. Community profiles were 
produced by each classifier using their recommended reference 
database. (A) Percentage of reads assigned to a species in 
community profiles. (B) Number of species reported by each 
classifier. (C) Number of species reported by each classifier with 
an estimated abundance ≥0.01%.

Properties of the Microba Genome Database
The Microba Genome Database (MGDB), the default reference 
database for the MCP, consists of 73,646 dereplicated 
genomes from 28,246 species clusters as defined by the 
Genome Taxonomy Database (GTDB; Parks et al., 2019; 
Parks et al., 2020). The 73,646 genomes in the MGDB were 
selected in order to provide comprehensive coverage of the 
genomic diversity within each species and with a specific 
focus on the human gastrointestinal tract. These genomes 
were obtained from a variety of sources including the NCBI 
Assembly database (52.4%), recent large-scale efforts to 
recover human gastrointestinal MAGs (35.7%; Almeida et 
al., 2019; Nayfach et al., 2019; Pasolli et al., 2019 or isolates 
(1.2%; Forster et al., 2019; Zou et al., 2019), and Microba’s 
own initiatives to obtain MAGs from customer samples 
(7.6%) and public metagenomes (3.2%; Fig. 5A). The 
73,646 MGDB genomes are predominately MAGs (66.3%; 
Fig. 5A) in agreement with a recent estimate that ~70% 
of microbial species in the human gastrointestinal tract  
remain to be cultured (Almeida et al., 2020). These MAGs 
have an average completeness of 89.5 ± 10.0% and 
contamination of 1.34 ± 1.48% with ~60% meeting the 
completeness and contamination criteria used to define 
high-quality MAGs (Bowers et al., 2017).

Nearly 50% (13,673) of the 28,246 species in the MGDB 
are comprised solely of uncultured genomes (i.e. MAGs 
or single-amplified genomes) with 625 species being 
comprised exclusively of MAGs obtained by Microba  
(Fig. 5B), which is reflected in their taxonomic assignments.  
Only 36.6% of the 28,246 species clusters in the MGDB 
have a species assignment in the NCBI Taxonomy  
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(Fig. 5B). For this reason, the MGDB and by extension 
the MCP uses the GTDB as a taxonomic resource as it 
provides a substantial improvement in taxonomic resolution 
with 87.5% of the MGDB species having a GTDB species 
assignment. Furthermore, adoption of the quantitative 
criteria used by the GTDB to circumscribe taxa allowed  
the 625 species exclusive to Microba to be readily identified 
and given temporary placeholder names with appropriate 
higher taxonomic ranks as determined by the GTDB-Tk 
(Chaumeil et al., 2019). The lack of taxonomic resolution 
in the NCBI Taxonomy extends beyond the rank of species 
with only 56.8% and 62.5% of MGDB species clusters 
having an NCBI genus or family assignment, respectively.  
In contrast, 97.9% and 99.8% of MGDB species clusters have 
GTDB genus or family assignments, respectively. 

Performance of MCP with the MGDB on mocks  
and gastrointestinal samples
On in silico mock communities the MCP generally performs 
better using the more comprehensive MGDB than the 

Figure 5. Properties of the Microba Genome Database (MGDB) and the results of profiling 2,000 deidentified Australian fecal samples 
using the MCP with the MGDB as a reference database. (A) Proportion of MAGs, isolates, and SAGs within the 73,646 genomes comprising 
the MGDB along with the source of these genome assemblies. Gastrointestinal MAGs were recovered from the studies of Almeida et al., 
2019; Nayfach et al., 2019; and Pasolli et al., 2019 and gastrointestinal isolates from the studies of Forster et al., 2019; Zou et al., 2019.  
(B) Proportion of the 28,246 MGDB species clusters comprised exclusively of uncultured genomes (i.e. MAGs or single-amplified genomes) 
obtained from multiple sources or solely of MAGs recovered by Microba. This is followed by the proportion of MGDB species clusters that 
can be assigned a GTDB or NCBI species assignment. (C) Total number of species reported by the MCP for each sample and the number 
of these species which are uncultured species or Microba MAG-exclusive species. (D) Total percentage of reads assigned by the MCP to 
genomes in the MGDB and the percentage assigned to isolates, public MAGs/SAGs, or MAGs obtained by Microba. (E) Percent identity of 
reads mapped by the MCP for 2,000 Australian fecal samples and in silico mock communities with decreasing ANI similarity to genomes 
in the standardized reference database.
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relatively small standardized reference database. In 
particular, use of the MGDB results in an improvement 
in correct identification of species comprising the mock 
communities and in the accuracy of species abundance 
estimates (Tables 4 and 5). The proportion of the community 
resulting from false positive (0.18 to 0.27%) or false negative 
(0.20 to 0.31%) predictions increases slightly with the use 
of the MGDB (Table 5). We attribute this to challenges 
inherent in robustly distinguishing between highly similar 
species which are more prevalent in the MGDB (28,246 
species) compared to the standardized reference database  
(12,250 species). Low levels of contamination in MAGs 
within the MGDB may also contribute to the small increase 
in false positives. 

As the MGDB is comprised of a large number of MAGs  
and isolates specific to the human gastrointestinal 
microbiome, we expect the benefits of the MGDB to be 
more pronounced on samples from this habitat than on the 
in silico mock communities. To illustrate this, we examined 
the species profiles produced by the MCP using the MGDB 
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on 2,000 deidentified Australian fecal samples. The MCP 
reports an average of 171.8 ± 51.6 species per sample 
with 84.3 ± 3.1% of reads being mapped to a species in the 
MGDB (Figs. 5C and 5D). The 7,950 unique MAGs obtained 
by Microba account for >10% of the genomes comprising 
the MGDB (Fig. 5A) and capture genomic variation within 
species not accounted for by publicly-available genomes. 
This is illustrated by MCP mapping reads to 6,035 ± 1,669 
genomes on average and 1,534 ± 472 of these being to 
Microba recovered MAGs. Notably, 26.8 ± 6.6% of reads 
have a best mapping to a MAG obtained by Microba (Fig. 
5D) and 34.3% of samples contain a Microba MAG which 
accounts for ≥5% of the mapped reads.This highlights the 
benefits of obtaining MAGs from the samples being profiled 
in order to build a reference database with strains specific to 
the habitat being studied.

We assessed the similarity of strains found in the human 
gastrointestinal tract to genomes comprising the MGDB  
by considering the percent identity (PI) and percent  
alignment length (PA) of reads mapped by the MCP.  
Mapped reads had a PI and PA of 99.78% and 99.99%, 
respectively, averaged over the 2,000 Australian fecal 
samples. Comparing these similarity values to the PI and 
PA observed for the in silico mock communities with known 
ANI to reference genomes suggests strains found in the 
human gastrointestinal tract generally have high ANI (i.e. 
>99%) to MGDB reference genomes (Fig. 5E; Supp. Table 
6), indicating it is a comprehensive database for fecal 
microbiome profiling.

Discussion
The Microba Community Profiler was developed to provide 
accurate metagenomic profiles of fecal microbiomes.  
Here we evaluated the performance of the MCP relative 
to nine metagenomic classifiers that are widely used and/
or have been shown to be among the best performing 
classifiers (Seppey et al., 2020; Ye et al., 2019; Lindgreen et 
al., 2016; Sczyrba et al., 2017). Benchmarking was performed 
using 140 in silico mock communities with decreasing ANI 
similarity to genomes in a standardized reference database. 
To the best of our knowledge, this is the first benchmarking 
study to explicitly investigate the impact of genomic 
similarity to reference database genomes on classification 
performance. Our results demonstrate that the MCP has the 
highest combined precision and recall (i.e. F1 score) among 
all evaluated classifiers indicating that the optimized trade-off 
between false positive and false negative predictions used by 

MCP provides the most accurate community profiles (Fig. 2). 
The strong performance of the MCP was observed across all 
mock communities indicating it can reliably identify species 
even when strains are up to 5% divergent at the nucleotide 
level from genomes in the reference database. This is in 
contrast to the other evaluated classifiers which showed a 
substantial reduction in performance on mock communities 
with low similarity to genomes in the standardized reference 
database (Fig. 2C).

MCP, Kraken, Bracken, and Ganon all provide reasonably 
accurate estimates of the relative abundance of species in 
moderate and high ANI mock communities with MetaCache 
showing slightly better performance (Figs. 3A and 3B).  
An advantage of MCP is a smaller portion of false positive 
predictions (Fig. 3C) giving researchers confidence in the 
predicted community profile. All classifiers failed to provide 
accurate estimates of the abundance of species on the low 
ANI mock communities (Figs. 3A and 3B) with the standard 
reference database. While this limitation warrants further 
investigation to improve classifier performance, inspection 
of community profiles of fecal samples produced by the MCP 
when using the MGDB as a reference database suggests that 
strains found in the human gastrointestinal tract typically 
have high ANI similarity to MGDB reference genomes  
(Fig. 5E). This is encouraging as the mock community 
results suggest that low abundance species (<0.01%) can 
be identified by the MCP with a low false discovery rate when 
using a reference database containing closely related strains 
(Fig. 1C; Table 3).

Our benchmarking analysis follows the recommendation 
that classifiers be evaluated independently of their reference 
database (Ye et al., 2019) as the specific composition of 
databases can have a considerable impact on classification 
performance (Nasko et al., 2018; Méric et al., 2019). This 
is evident from the higher number of reads from human 
fecal samples that were classified by MCP compared to 
MetaCache, Kraken, and Bracken using the default reference 
databases of each classifier (Fig. 4A). We attribute the 
substantially higher percentage of reads classified by 
MCP, in part, to the use of a more comprehensive human 
gut microbiome database (Fig. 5A), consistent with 
previous studies showing the benefit of including human 
gastrointestinal MAGs (Pasolli et al., 2019; Almeida et al., 
2019; Nayfach et al., 2019). As the recovery of MAGs is 
outpacing our ability to culture new species, it is critical 
for metagenomic classifiers to make use of this additional 
source of information, including taxonomic frameworks that 
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accommodate uncultivated species, such as GTDB (Parks et 
al., 2020; Fig. 5B).

The majority of evaluated classifiers provide only a partial 
solution to the goal of establishing which species are present 
within a community. This is exemplified by the large number 
of false positives reported by Ganon, Kraken, Bracken, 
MetaCache, DIAMOND-LCA, and Kaiju (Fig. 5D). Ultimately, 
these classifiers require researchers to investigate the 
resulting profiles to establish suitable criteria for establishing 
which species are likely true positives (Ye et al., 2019). This 
is in contrast to the MCP, mOTUs, and MetaPhlAn which 
explicitly aim to produce community profiles comprised 
solely of true positive predictions, without user input.

MCP is under ongoing development and MGDB  
is constantly updated with genomes of newly identified 
species. Current efforts are focused on improving the 
accuracy of species abundance estimates by expanding 
the genomic diversity of gut species captured by the 
MGDB and exploring if unclassified reads can be assigned 
to species without increasing false positive predictions. 
Future improvements to the detection limit of MCP include 
identifying and removing contamination in reference 
genomes which can result in low abundance false positive 
predictions. While there are opportunities to continue 
improving the performance of MCP, the results of this study 
illustrate that MCP is the best overall classifier.

Material and Methods

Standardized reference database for classifiers
A reference database of 15,555 genomes from 12,250 
species was constructed from RefSeq release 97 (Kitts  
et al., 2016) obtained from NCBI on 22 November 2019 for 
use by all metagenomic classifiers (Supp. Table 1). Only 
isolate genomes estimated to be >90% complete with 
<5% contamination by CheckM v1.0.13 (Parks et al., 2015 
and where the assembly meet the following criteria were 
considered for inclusion in the database: i) <500 contigs,  
ii) N50 >20kb, and iii) <10,000 undetermined bases.  
In addition, only genomes with species designations forming 
a 1-to-1 mapping between the GTDB R04-RS89 (Parks et al., 
2018) and NCBI (Federhen 2015; downloaded 22 November 
2019) taxonomies were considered to help ensure reference 
genomes had correct species assignments. This limited the 
genomes selected for the reference database to those in GTDB 
R04-RS89 (based on RefSeq release 89), in order to allow 
recently submitted genomes to be used for generating in silico 

mock communities. A maximum of 5 genomes were selected  
for each species in order of assembly quality as defined  
by Q = completeness – 5×contamination – 0.05* (no. contigs) 
– 0.00005* (no. undetermined bases), with an additional 
100 added to the assembly quality if it was annotated as 
complete as determined by consulting the ‘assembly level’ 
annotation at NCBI. In order to avoid having highly similar 
genomes in the reference database, a genome was only 
included if it had an ANI <99% to all other intraspecific 
genomes as determined with Mash v2.1.1 (Ondov et al., 
2016). The reference database contains 10,776 species 
with exactly 1 genome and 1,474 species represented by >1 
genome, and these species have an average intraspecific 
ANI of 97.8 ± 0.96% as determined with FastANI v1.3  
(Jain et al., 2018).

Generation of in silico mock communities
In silico mock communities were constructed from RefSeq 
release 97 genomes which passed the same filtering 
criteria used for the standardized reference database, 
including the requirement of a 1-to-1 mapping between 
GTDB and NCBI species assignments (see above).  
The 67,299 genomes in RefSeq release 97 not covered 
by GTDB R04-R89 were assigned GTDB classifications 
using GTDB-Tk v0.3.3 (Chaumeil et al., 2019). Intraspecific 
ANI values between reference database genomes and 
potential mock community genomes were calculated with 
FastANI v1.3. These ANI values were used to generate 
mock communities comprised of genomes which were 
increasingly divergent from those in the standardized 
reference database at ANI intervals of [99%, 99.75%], 
[97%, 99%), and [95%, 97%) (Table 2). In addition, mock 
communities comprised of genomes in the reference 
database (ANI = 100%) were considered as these provide  
a useful point of comparison. 

The number of species in a mock community was modeled 
on a normal distribution with μ (mean number of species) 
=100 and σ (standard deviation in number of species) =25, 
or μ=500 and σ=100, in order to generate medium and 
high complexity communities, respectively. Communities 
were constructed with either a single genome selected 
from each species, or with 2 to 10 genomes randomly 
selected from each species. The relative abundance of 
genomes comprising mock communities were drawn 
from a log-normal distribution with a mean of 1 and a 
standard deviation of 2 as commonly used for modelling 
microbial communities (Curtis et al., 2002; Fritz et al., 2019).  
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The number of paired reads generated for each genome was 
ni = N × (ai  si ⁄ ∑j aj  sj ), where si is the size of genome i, 
ai is the relative abundance of genome i, and N is the total 
number of paired reads comprising the in silico community. 
All in silico communities were simulated to a depth of  
2.1 Gb by randomly sampling 2×150 bp paired-end reads 
with an insert size of 200 ± 25 bp across each genome  
in the mock community.

Building custom databases for metagenomic 
classifiers
The genomes comprising the standardized reference 
database were used to build a custom database for 
each classifier using recommended default parameters. 
Genomes comprising the standardized reference database 
were contained in individual FASTA files in a single directory 
(db_genomes) and concatenated into a single FASTA file 
(db_genomes_all.fna) in order to facilitate the requirements 
of the different metagenomic classifiers. The custom 

databases were built using the same NCBI Taxonomy 
data files used while constructing the standardized 
reference database which were obtained from NCBI  
(ftp://ftp.ncbi.nih.gov/pub/taxonomy) on 22 November 
2019 and consist of the files nodes.dmp, names.dmp, 
merged.dmp, nucl_gb.accession2taxid, and nucl_wgs 
accession2taxid. DIAMOND and Kaiju require protein 
sequences which were called for each reference genomes 
using Prodigal v2.6.3 (Hyatt et al., 2010) and the translation 
table specified at NCBI: prodigal -c -m -q -f gff -p single -g 
<trans_table> -i <ref_genome> -a <aa_output>. Prodigal 
was used to predict protein sequences as NCBI does not 
provide protein sequences for all genomes comprising 
the standardized reference database. A mapping file 
indicating the NCBI species ID for each predicted 
protein (db_proteins_all.taxid_map.tsv) and a FASTA file 
containing all proteins (db_proteins_all.faa) were created  
to facilitate building the DIAMOND and Kaiju databases. 
The commands executed to build custom databases  
for each classifier are given in Table 6.

Classifier Command(s)

Kraken NCBI Taxonomy data files were placed in kraken2_db/taxonomy and the database built with:
> kraken2-build --threads 4 --add-to-library db_genomes_all.fna --db kraken2_db
> kraken2-build --threads 64 --build --db kraken2_db

Bracken Built from Kraken 2 database using:
> bracken-build -d kraken2_db -t 60 -k 35 -l 150

Centrifuge > centrifuge-build -p 96 --conversion-table nucl_wgs_gb.accession2taxid --name-table names.dmp 
--taxonomy-tree nodes.dmp db_genomes_all.fna centrifuge_db

Ganon > ganon build -d ganon_db --input-files db_genomes_all.fna --taxdump-file nodes.dmp names.dmp merged.dmp -t 48

DIAMOND-LCA > diamond makedb -p 40 --db db_proteins_all.faa --in db_proteins_all.faa --taxonmap db_proteins_all.taxid_map.tsv  
--taxonnodes nodes.dmp

Kaiju Sequence headers in db_proteins_all.faa were formatted to contain NCBI TaxIds and the database built with:
> kaiju-mkbwt -n 20 -o kaiju_db db_proteins_all.faa
> kaiju-mkfmi kaiju_db

MetaCache NCBI Taxonomy data files were placed in the directory ncbi_taxonomy and the database built with:
> metacache build metacache_db db_genomes -taxonomy ncbi_taxonomy

mOTUs A file, genomes.list, containing the accession of all standardized database genomes was created along with a mOTUs 2 formatted 
taxonomy file, taxonomy_file.txt. Since mOTUs 2 only supports extending an existing database, empty mOTU 2 data files were 
created in the directory clean_db. The database was then built with:
> parallel -j 64 -a genomes.list “extend_mOTUs_addGenome.sh db_genomes/{}.fasta {} standard_db extend_mOTUs_DB/SCRIPTS/ 
clean_db”
> extend_mOTUs_generateDB.sh genomes.list STANDARD_DB taxonomy_file.txt standard_db extend_mOTUs_DB/SCRIPTS/ 
clean_db

MetaPhlAn MetaPhlAn 2 was run using the marker dataset v296_CHOCOPhlAn_201901 downloaded on Feb. 25, 2020.

Table 6. Commands for building custom databases for each of the metagenomic classifiers.
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>1000 contigs, or having an N50 <5Kb. These genomes 
were dereplicated based on ANI similarity to obtain a final 
database consisting of 73,646 genomes from 28,246 
species. Completeness and contamination estimates for 
genomes within the MGDB were determined using CheckM 
v1.1.2 (Parks et al., 2015). Genomes without taxonomic 
assignments in GTDB R04-RS89 were assigned a GTDB 
classification using GTDB-Tk v0.3.3 (Chaumeil et al., 2019) 
and additional species clusters defined using the ANI criteria 
used by the GTDB (Parks et al., 2020). 

Classifier performance metrics

Precision and recall can be defined in terms of the number 
of species correctly (true positives; TP) and incorrectly 
(false positive; FP) identified by a classifier along with the 
number of unidentified species present in a sample (false 
negative; FN). Precision, P=TP/(TP+FP), is the fraction  
of species identified by a classifier that are correct, while 
recall, R=TP/(TP+FN), is the fraction of correctly identified 
species within a sample. The F1 score is the harmonic mean 
of precision and recall, (2×P×R)/(P+R), which weights these 
terms equally in a single metric. 

Absolute and relative percent error for each species  
within a sample are defined in terms of the true, T, and 
estimated, E, abundance of a species. Absolute error, 
A=|T-E|, indicates how close abundances estimates are 
to the true abundance of a species, while relative percent 
error, R=100×A/T, expresses how large the absolute error 
is compared to the true abundance which highlights poor 
estimates of low abundance species. The L1 (Manhattan) 
distance is the sum of absolute errors across all ground 

Species-level community profiling  
with metagenomic classifiers
Community profiles were generated for mock communities 
using each of the metagenomic classifiers run with 
default parameters (Table 7). DIAMOND indicates the 
lowest common ancestor (LCA) for each query read, but 
does not produce a profile indicating the proportion of 
reads assigned to each species. A custom script was 
used to tabulate the proportion of reads assigned to each 
species. Reads with an LCA above the rank of species 
were considered unclassified for the purposes of creating  
a species profile for each mock community. 

MetaPhlAn results were obtained using the  
v296_CHOCOPhlAn_201901 marker set which may have 
species assignments that differ from those defined for 
the in silico mock communities due to reclassifications 
at NCBI. To account for this, the NCBI TaxIds produced 
by MetaPhlAn were used to establish species names  
as defined in the 22 November 2019 NCBI Taxonomy data 
files, the same files used to construct the mock communities.

Microba Genome Database
The Microba Genome Database (MGDB) v2 was built 
from genomes in GTDB R04-RS89, MAGs obtained from 
Australian fecal samples, MAGs mined from SRA samples by 
Microba, and MAGs and isolate genomes from the Almeida 
et al. (2019), Forster et al. (2019), Nayfach et al. (2019), 
Pasolli et al. (2019), and Zou et al. (2019). Together these 
sources span 411,415 genomes after removing lower quality 
assemblies as defined by having a completeness estimate 
<80%, a contamination estimate >5%, being comprised of 

Classifier Command(s)

Kraken > kraken2 --db {kraken2_db} --report {sample_id}.kreport2 --output {sample_id} --paired {left_reads} {right_reads}

Bracken > est_abundance.py -i {sample_id}.kreport2 -k {bracken2_db} -o {sample_id}.bracken

Centrifuge > centrifuge -x {centrifuge_db} -1 {left_reads} -2 {right_reads} --report-file {profile_file} -S {per_read_file}

Ganon > ganon classify -d {ganon_db} -p {left_reads} {right_reads} -o {profile_file}

DIAMOND-LCA > diamond blastx --query-gencode 11 -f 102 --top 10 --min-score 50 -d {diamond_db} -q {left_reads} -o {profile_file}

Kaiju > kaiju -v -t {ncbi_nodes} -f {kaiju_db} -i {left_reads} -j {right_reads} -o {report}
> kaiju2table -v -t {ncbi_nodes} -n {ncbi_names} -r species -o { profile_file} {report}

MetaCache > metacache query {metacache_db} {left_reads} {right_reads} -pairfiles -out {report} -abundances {profile_file}  
-abundance-per species

mOTUs > motus profile -f {left_reads} -r {right_reads} -db {motu_db} -o {profile_file}

MetaPhlAn > metaphlan2.py {left_reads},{right_reads} {profile_file} --bowtie2out {sample_id}.bowtie2.bz2 --index v296_CHOCOPhlAn_201901 
--ignore_eukaryotes --input_type fastq

Table 7. Commands for profiling mock communities with each of the metagenomic classifiers.
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truth and predicted species which provides a measure that 
incorporates false positive predictions (Ye et al., 2019). The 
mean relative percent error across all ground truth species in 
a sample was used as for assessing classifier performance. 
Different ground truth abundances were used for classifiers 
that estimate i) the relative proportion of reads from each 
species (Ganon, Kraken, Bracken, MetaCache, DIAMOND-
LCA, Kaiju) and ii) the relative proportion of reads normalized 
by genome size (MCP, Centrifuge, mOTUs, MetaPhlAn). 

Previous benchmarking studies have suggested the use  
of the Euclidean distance and the area under the precision-
recall curve (AUPR) for evaluating classifier performance 
(Ye et al., 2019). We elected to use the L1 distance  
as it does not give additional weight to high abundance 
species and report precision and recall independently  
as the AUPR is known to be biased toward low-precision,  
high-recall classifiers (Ye et al., 2019). This is a notable 
limitation as many classifiers fall into this categorization.

Establishing classifier detection limits

The detection limit for classifiers was defined as the  
lowest abundance species in a sample that achieved  
a specified false discovery rates, FDR=FP/(TP+FP).  
This was determined by ordering identified species  
in ascending order of abundance and calculating the 
FDR after filtering species below each abundance level.  
The detection limit for a sample is the lowest abundance  
at which the desired FDR could be achieved.

Community profiles for human gastrointestinal 
metagenomes

Community profiles for deidentified Australian fecal samples 
were produced for selected metagenomic classifiers 
using recommended reference databases. Reference 
databases for MetaCache and Kraken were obtained using 
the scripts and recommended parameters suggested by 
these classifiers (Tables 6 and 7). These databases were 
built on March 3, 2020. Kraken v2.0.8 was used for this 
analysis as opposed to v2.0.7 as changes to NCBI data 
formats required the use of this later version. MetaCache 
and Kraken differ in the set of included reference genomes 
as MetaCache only considered genomes annotated as 
a “Complete Genome” at NCBI while Kraken also includes 
genomes annotated as “Chromosome”. Bracken results 
are derived from the mapping information produced by 

Kraken. mOTUs and MetaPhlAn results were obtained  
using pre-built marker databases. Profiling was performed 
as previous described (Table 8).

Data availability
The in silico paired-end reads and ground truth data for 
the 140 mock communities are available upon request.  
Genomes used to build the standardized reference database 
are given in Supp. Table 1 and can be obtained from the NCBI 
Assembly database (Kitts et al., 2016). The metagenomic 
classifiers can be obtained from their respective websites 
as indicated in the cited literature with the exception of MCP 
which is proprietary software developed by Microba Life 
Sciences Limited.

Classifier Command(s)

Kraken > kraken2-build --standard --db standard_db

Bracken Results derived from information produced by Kraken

MetaCache > metacache-build-refseq

mOTUs Marker database is pre-built and provided with software

MetaPhlAn MetaPhlAn 2 was run using the marker dataset  
v296_CHOCOPhlAn_201901

Table 8. Commands for building recommended  
reference databases.
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reference database for varying false discovery rates. uMCP = unfiltered MCP;  G = Ganon;  K = Kraken;  B = Bracken;  M = MetaCache;  C = Centrifuge;   
D = DIAMOND-LCA, MPA = MetaPhlAn.
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Supp. Fig. 2. Performance of metagenomic classifiers to predict species abundances. (A) L1 distance (0% = identical to ground truth; 200% = no species in common 
with ground truth) between the ground truth and predicted species profiles. (B) Mean relative error of species present in both the ground truth and predicted 
species profiles. (C) Sum of false positive species abundances. (D) Sum of false negative species abundances. Identical to Figure 3 except results for Centrifuge,  
DIAMOND-LCA, Kaiju, mOTUs, and MetaPhlAn are included.
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Supplemental Tables

Supp. Table 1. Metadata for the 15,555 isolate genomes comprising the standardized reference database (see Excel file).

Supp. Table 2. Metadata for the 140 in silico mock communities (see Excel file).

Supp. Table 3. Number of true positive (TP) and false positive (FP) species predictions along with the false discovery rate (FDR) of 
metagenomic classifiers on mock communities without filtering of low abundance species and with varying ANI to reference database 
genomes (mean ± std. dev.). 

High ANI Moderate ANI Low ANI

Classifier TP FP FDR TP FP FDR TP FP FDR

MCP 214 ± 129.6 0.20 ± 0.46 0.18 ± 0.44 217 ± 130.1 2.52 ± 1.83 1.75 ± 1.89 75 ± 21.88 9.90 ± 4.45 11.34 ± 3.40

Unfiltered MCP 288 ± 201.0 1105 ± 329.5 81.7 ± 7.88 312 ± 213.2 1407 ± 425.2 84.0 ± 6.77 101 ± 30.8 1049 ± 263.2 91.2 ± 1.66

MCP w/ MGDB 213 ± 128.4 0.47 ± 0.77 0.27 ± 0.50 222 ± 133.7 2.42 ± 1.87 1.54 ± 1.40 81 ± 23.98 5.10 ± 2.23 6.14 ± 2.66

Ganon 288 ± 201.1 2148 ± 599.3 89.6 ± 4.81 312 ± 213.2 2673 ± 754.7 90.8 ± 4.19 101 ± 30.8 2154 ± 439.2 95.6 ± 0.84

Kraken 288 ± 201.1 5756 ± 1188.2 95.0 ± 2.36 312 ± 213.2 7003 ± 1338.6 96.1 ± 2.12 100 ± 30.8 6470 ± 1128.8 98.5 ± 0.33

Bracken 287 ± 200.1 2057 ± 367.0 88.7 ± 6.34 312 ± 212.6 2677 ± 559.4 90.6 ± 5.10 100 ± 30.8 2618 ± 638.5 96.2 ± 1.18

MetaCache 288 ± 201.0 1968 ± 533.8 88.7 ± 5.27 312 ± 213.2 2457 ± 676.9 90.1 ± 4.57 101 ± 30.8 1942 ± 406.6 95.1 ± 0.96

Centrifuge 288 ± 201.0 1584 ± 451.7 86.4 ± 6.26 312 ± 212.7 1716 ± 500.9 86.4 ± 5.97 100 ± 30.6 1097 ± 279.7 91.6 ± 1.77

DIAMOND-LCA 288 ± 200.9 4828 ± 953.3 94.9 ± 2.82 312 ± 213.0 5617 ± 1103.3 95.3 ± 2.58 101 ± 30.9 4611 ± 868.0 97.9 ± 0.48

Kaiju 288 ± 201.1 7943 ± 1177.9 96.8 ± 1.92 312 ± 213.2 9161 ± 1094.7 96.9 ± 1.85 101 ± 30.8 8385 ± 1247.4 98.8 ± 0.27

mOTUs 218 ± 136.0 6.67 ± 2.94 3.64 ± 2.05 240 ± 151.5 15.9 ± 5.30 8.58 ± 5.47 82 ± 25.3 44.65 ± 14.37 35.1 ± 6.00

MetaPhlAn 187 ± 113.6 12.2 ± 5.25 7.55 ± 3.72 193 ± 117.5 15.5 ± 6.58 8.72 ± 2.92 65 ± 19.6 7.85 ± 2.50 10.7 ± 2.63

Supp. Table 4. Evaluation of classifiers to predict the presence or absence of species in mock communities with varying ANI to reference 
database genomes (mean ± std. dev.).

High ANI Moderate ANI Low ANI

Classifier Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

MCP 1.00 ± 0.00 0.97 ± 0.02 0.98 ± 0.01 0.98 ± 0.02 0.92 ± 0.05 0.95 ± 0.02 0.89 ± 0.03 0.84 ± 0.08 0.86 ± 0.04

Unfiltered MCP 0.90 ± 0.09 0.99 ± 0.01 0.94 ± 0.05 0.85 ± 0.11 0.96 ± 0.02 0.90 ± 0.06 0.67 ± 0.08 0.89 ± 0.06 0.76 ± 0.04

MCP w/ MGDB 1.00 ± 0.00 0.97 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 0.93 ± 0.04 0.96 ± 0.02 0.94 ± 0.03 0.90 ± 0.06 0.92 ± 0.03

Ganon 0.83 ± 0.13 0.99 ± 0.01 0.90 ± 0.08 0.76 ± 0.16 0.99 ± 0.01 0.85 ± 0.10 0.48 ± 0.09 0.98 ± 0.02 0.64 ± 0.08

Kraken 0.71 ± 0.18 0.99 ± 0.01 0.82 ± 0.13 0.64 ± 0.20 0.99 ± 0.01 0.76 ± 0.15 0.34 ± 0.08 0.98 ± 0.02 0.50 ± 0.09

Bracken 0.70 ± 0.18 1.00 ± 0.00 0.81 ± 0.14 0.62 ± 0.20 0.99 ± 0.01 0.74 ± 0.16 0.32 ± 0.08 0.99 ± 0.01 0.48 ± 0.09

MetaCache 0.83 ± 0.13 1.00 ± 0.01 0.90 ± 0.08 0.78 ± 0.15 0.99 ± 0.01 0.86 ± 0.09 0.50 ± 0.08 0.99 ± 0.01 0.66 ± 0.07

Centrifuge 0.89 ± 0.09 0.96 ± 0.03 0.92 ± 0.04 0.76 ± 0.14 0.93 ± 0.04 0.83 ± 0.07 0.40 ± 0.08 0.88 ± 0.06 0.54 ± 0.06

Diamond 0.85 ± 0.12 0.70 ± 0.11 0.76 ± 0.06 0.83 ± 0.13 0.70 ± 0.12 0.74 ± 0.06 0.60 ± 0.09 0.68 ± 0.07 0.63 ± 0.06

Kaiju 0.75 ± 0.17 0.95 ± 0.04 0.82 ± 0.11 0.68 ± 0.19 0.94 ± 0.04 0.77 ± 0.12 0.35 ± 0.07 0.93 ± 0.05 0.51 ± 0.07

mOTUs 0.96 ± 0.02 0.93 ± 0.02 0.95 ± 0.02 0.91 ± 0.05 0.94 ± 0.02 0.92 ± 0.03 0.64 ± 0.06 0.89 ± 0.05 0.75 ± 0.04

MetaPhlAn 0.93 ± 0.03 0.79 ± 0.05 0.85 ± 0.03 0.92 ± 0.03 0.75 ± 0.07 0.82 ± 0.04 0.90 ± 0.03 0.70 ± 0.05 0.79 ± 0.03

https://www.microba.com/publications/profiler-evaluation/data/
https://www.microba.com/publications/profiler-evaluation/data/
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Supp. Table 5. Performance statistics for species abundance estimates on mock communities with varying ANI to reference database 
genomes (mean ± std. dev.).

Supp. Table 6. Percent identity (PI) and percent alignment length (PA) of reads mapped to reference databases by the MCP  
(mean ± std. dev.).

High ANI Moderate ANI Low ANI

Classifier L1 distance Relative error Sum of FPs L1 distance Relative error Sum of FPs L1 distance Relative error Sum of FPs

MCP 7.63 ± 1.43 7.84 ± 1.32 0.01 ± 0.02 14.2 ± 3.24 14.6 ± 2.60 0.12 ± 0.13 31.9 ± 5.31 33.2 ± 7.36 1.01 ± 0.77

Unfiltered MCP 8.41 ± 1.49 8.04 ± 0.85 0.53 ± 0.66 15.9 ± 3.64 15.8 ± 3.74 0.94 ± 0.63 34.5 ± 5.48 35.6 ± 7.73 2.31 ± 1.14

MCP w/ MGDB 8.39 ± 1.88 8.59 ± 1.35 0.02 ± 0.03 13.6 ± 4.17 14.1 ± 3.10 0.22 ± 0.47 20.2 ± 10.58 20.2 ± 5.98 1.35 ± 1.69

Ganon 8.53 ± 1.66 7.56 ± 0.80 0.93 ± 0.74 15.1 ± 4.17 13.7 ± 4.26 1.90 ± 1.14 30.3 ± 7.36 30.5 ± 15.89 6.38 ± 2.27

Kraken 11.03 ± 2.60 9.41 ± 1.99 2.05 ± 1.20 17.7 ± 5.48 15.6 ± 5.70 3.70 ± 2.08 35.6 ± 8.81 35.1 ± 21.44 11.2 ± 3.28

Bracken 7.66 ± 2.38 7.09 ± 2.31 2.27 ± 1.30 13.2 ± 5.20 12.6 ± 6.86 4.24 ± 2.38 31.0 ± 8.47 31.2 ± 23.43 12.9 ± 3.87

MetaCache 6.41 ± 1.65 6.48 ± 1.32 1.04 ± 0.84 11.0 ± 3.43 12.0 ± 6.27 1.81 ± 1.21 22.6 ± 7.35 27.7 ± 19.52 6.57 ± 3.24

Centrifuge 45.8 ± 7.40 49.0 ± 9.32 0.59 ± 0.60 57.6 ± 8.20 63.1 ± 14.50 2.32 ± 1.41 77.3 ± 17.34 80.7 ± 17.49 15.0 ± 7.20

DIAMOND-LCA 80.3 ± 4.11 69.8 ± 4.15 0.47 ± 0.31 80.5 ± 4.85 70.2 ± 3.53 0.60 ± 0.51 88.4 ± 3.52 78.7 ± 3.56 1.35 ± 0.46

Kaiju 41.6 ± 6.44 33.1 ± 3.11 1.42 ± 0.84 46.5 ± 6.35 37.2 ± 2.29 2.34 ± 1.46 63.4 ± 8.20 54.2 ± 13.01 7.51 ± 1.85

mOTUs 15.1 ± 9.58 33.3 ± 17.48 2.74 ± 4.39 17.3 ± 6.22 35.1 ± 15.14 4.07 ± 3.54 35.0 ± 12.41 59.4 ± 80.10 13.5 ± 5.49

MetaPhlAn 34.6 ± 16.25 28.9 ± 13.52 2.91 ± 3.03 40.0 ± 13.21 39.1 ± 55.33 3.98 ± 3.19 49.5 ± 19.46 63.1 ± 58.48 3.53 ± 2.47

Samples No. samples ANI to reference genomes PI PA

Australian fecal samples 2,000 (unknown) 99.78 ± 0.56 99.99 ± 0.14

High ANI mock samples 40 99 to 99.75% 99.76 ± 0.67 99.98 ± 0.27

Moderate ANI mock samples 40 97 to 99% 99.39 ± 1.07 99.97 ± 0.37

Low ANI mock samples 20 95 to 97% 98.26 ± 1.76 99.91 ± 0.66
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