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Introduction
Accurately identifying the microbial species present in biological samples is essential for understanding 

their role in clinical and environmental applications. In the context of the human microbiome, this is 

critical for establishing links between microbial species and health and disease. Our inability to culture 

most in situ microbial populations has severely limited our understanding of microbial ecosystems1,2, 

and even highly studied habitats such as the human gut lack cultured representatives for ~70% of 

the component species3. The application of metagenomic sequencing – the recovery and analysis 

of all genomic DNA in a clinical or environmental sample – has transformed the study of microbial 

ecosystems by bypassing this cultivation bottleneck, providing an unbiased and comprehensive view 

of the taxonomic and functional composition of microbial communities and enabling the discovery of 

novel species within a sample.

The accurate analysis and interpretation of metagenomic datasets remains a computational challenge 

due to their complexity, the comparatively short read length of sequencing technologies, and 

incomplete genome reference databases4,5. There is, therefore, a critical need for taxonomic profiling 

tools to keep up with advancements in sequencing technologies. Several approaches are presently used 

to estimate the relative abundance of species in a metagenomic sample. These can be grouped into four 

categories based on how sequence similarity is established: i) genome alignment approaches such as 

Centrifuge6, ii) protein alignment approaches such as Kaiju7 and DIAMOND8, iii) marker gene approaches 

such as MetaPhlAn9 and mOTUs10, and iv) composition or k-mer based approaches such as Kraken11, 

Bracken12, MetaCache13, and Ganon14.

Here we benchmark the Microba Community Profiler (MCP), which uses a genome alignment approach, 

against existing metagenomic classifiers using 140 in silico mock microbial communities comprised 

of varying numbers of bacterial and archaeal species. The 140 mock communities span 6,971 unique 

species from 2,268 genera and 50 phyla, and contain species ranging from 0.0000019% to 80.5% of 

the community. Recognising that the quality of the reference database has a large influence on the 

performance of classifiers, we developed a single standardised reference database to compare classifier 

performance5,15,16. The mock communities were stratified by how close the genomes matched the 

representatives in the standardised reference database using the measure of average nucleotide identity 

(ANI). This resulted in mock communities with identical, high, moderate and low ANIs. For the purposes 

of this summary, the figures below used only the high and moderate ANI mock communities (80 total 

mock communities), as these ANIs are the most representative of gut microbiome samples.

1 Microba Life Sciences Limited, 12/388 Queen St, Brisbane, QLD 4000, Australia
* david.wood@microba.com
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Figure 1. Comparison of minimum detection limits at which species can be reliably 
detected by classifiers

Superior Detection Limit
The in silico mock communities were used to establish detection limits for the different classifiers.  

The detection limit is the lowest abundance that a species in a sample can be identified before an 

unacceptable number of false positives are reported. It is important to minimise false positives to have 

confidence in the species reported by a classifier. We define the detection limit of each classifier as the 

lowest reported abundance at which a target false discovery rate (FDR) can be achieved. At an FDR of 

0.1% (where an FDR of 0.1% indicates that 1 in 1000 species is expected to be a false positive), the MCP 

had the lowest overall mean detection limit at 0.007%. When comparing detection limits across multiple 

target FDRs, the MCP maintained the lowest detection limit, whereas there was substantial variation 

between other classifiers (Figure 1).

With a detection limit of 0.007%, the MCP 
was 20-60 times more sensitive than other 
metagenomic classifiers. 
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Best Performance in Predicting  
the Presence or Absence of Species 
Here, the in silico mock communities were used to determine the performance of species predictions 

(presence or absence of species) for the different metagenomic classifiers using an F
1
 score (see below).  

For this analysis, we first removed low abundance populations <0.01%, which ensures more accurate 

results by acknowledging that species comprising the “long tail” of microbial communities17,18 cannot be 

identified by most metagenomic classifiers without reporting unacceptable numbers of false positives 

(Figure 1). 

In computational prediction models, an F
1
 score is a measure of a test’s performance, with the highest 

possible value of 1. The F
1
 score is calculated based on the precision and recall of the classifier, where 

precision is the proportion of correctly identified species out of all species identified, and recall is the 

proportion of correctly identified species out of all species that should have been identified. There is 

typically a trade-off between precision and recall, and it is important to optimise this balance to increase 

the overall performance of the classifier. Giving equal weight to precision and recall, this analysis shows 

the MCP is the most accurate (F
1
 = 0.97) at predicting the presence or absence of species (Figure 2). 

With an F
1
 score of 0.97, the MCP has superior 

recall and precision, outperforming other 
classifiers by 5-20%

Figure 2. Comparison of F
1
 score amongst metagenomic classifiers
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Equivalent or Superior Relative Abundance Estimates
In addition to accurately identifying the presence or absence of a species, it is also important that a 

classifier can accurately estimate the relative abundance of a species. This was assessed by calculating 

the L1 distance, which is the absolute difference between predicted and mock profiles, for all 140 

in silico mock communities (with mock communities filtered to remove species present at <0.01% 

abundance).  These results indicate that MCP, Ganon, Kraken, Bracken, and MetaCache are all able to 

provide reasonably accurate species abundance estimates (Figure 3). 

We further assessed the percent of the predicted community that was comprised of false positive 

and false negative species using the in silico mock communities. The MCP predicted a substantially 

lower overall percent abundance of false positive species compared to the other classifiers, while still 

maintaining a low overall percent abundance of false negatives (Table 1). This highlights the trade-off 

between false negative and false positive predictions, and shows the MCP favours a slight increase in 

the percent of the community that is not detected (false negatives) in order to substantially reduce the 

percent of the community comprised of erroneously reported species (false positives).

Figure 3. Comparison of L1 distance 
amongst metagenomic classifiers
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The MCP can accurately predict the relative abundance 
of species and the abundance of erroneously identified 
species is 4 -16x’s less than other classifiers.

Classifier
Abundance  
of FPs (%)

Abundance  
of FNs (%)

MCP 0.18 ± 0.45 0.20 ± 0.25

Ganon 1.72 ± 2.32 0.03 ± 0.05

Kraken 3.42 ± 3.89 0.06 ± 0.35

Bracken 3.92 ± 4.53 0.05 ± 0.35

MetaCache 1.97 ± 3.00 0.02 ± 0.03

Centrifuge 2.97 ± 5.73 0.28 ± 0.32

DIAMOND-LCA 0.54 ± 0.53 3.05 ± 2.41

Kaiju 2.19 ± 2.59 0.20 ± 0.19

mOTUs 4.79 ± 5.76 4.58 ± 4.69

MetaPhlAn 3.58 ± 3.21 16.63 ± 10.82

Table 1. False positive (FP) and false negative 
(FN) species abundance estimates across the 
140 mock communities (mean ± std. dev)



6Microba Life Sciences Ltd

The MCP Identifies More Species 
In recent years, the application of metagenomic sequencing has shed light on the numerous links 

between the gut microbiome and human health. The gut microbiome has been associated with 

a range of diseases including metabolic diseases19, gastrointestinal disorders20 and even cancer21, 

making it critical to have accurate and comprehensive characterisation of communities to help guide 

diagnostics and therapeutic strategies. 

Therefore, we evaluated the performance of the strongest performing classifiers on human faecal 

metagenomes. Community profiles produced by MetaCache, Kraken, and Bracken were compared  

to those obtained using the MCP on a set of 100 de-identified Australian faecal metagenomes. Unlike  

the in silico mock community analysis, here each classifier was evaluated using its recommended 

reference database. MCP uses the Microba Genome Database (MGDB) which consists of 73,646 

dereplicated genomes which span the 24,706 species clusters defined by the Genome Taxonomy 

Database22,23 and 3,540 additional species clusters consisting of MAGs and isolates from recent 

human gastrointestinal studies and Microba’s own initiatives to obtain MAGs from research participant 

samples and public metagenomes.

Since the community composition of the faecal samples are unknown, we used the percent 

of assigned DNA sequencing reads to evaluate classifier performance. Across the 100 faecal 

metagenomes, the MCP could assign an average of 84.4% of the DNA reads to a species, which 

was at least 25% more than the next closest performing classifier (Figure 4). This was attributed to 

the large number of uncultured gut microbiome species represented in MGDB that are absent from 

the reference databases used by the other classifiers, highlighting the need for a comprehensive 

reference database to achieve improved species identification by metagenomic classifiers.

30 40 50 60 70 80 90
Assigned reads (%)
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Figure 4. Comparison of the percentage of DNA reads assigned 
to a species by metagenomic classifiers on 100 de-identified 
Australian faecal samples

Using Microba’s Genome Database, the MCP  
can assign at least 25% more DNA reads per 
sample than other classifiers.
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Conclusions
The Microba Community Profiler was developed to provide accurate metagenomic profiles of faecal 

microbiomes. Here we demonstrate that the MCP has a superior detection limit, the most reliable 

species predictions, equivalent or superior relative abundance estimates, and identifies at least 25% more 

species among all evaluated classifiers. Importantly, this analysis indicates that the MCP outperforms the 

other classifiers even when all classifiers use the same reference genome database. 

The MCP is under ongoing development to further improve its detection limit and accuracy of species 

relative abundance estimates. In addition, the MGDB is constantly updated with the genomes of newly 

identified species to improve the percent of assigned DNA sequencing reads. While we will continually 

improve the performance of the MCP, the results of this study illustrate that the MCP is overall the best 

performing metagenomic classifier.
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